Malin and laforin are essential components of a protein complex that protects cells from thermal stress.

نویسندگان

  • Sonali Sengupta
  • Ishima Badhwar
  • Mamta Upadhyay
  • Sweta Singh
  • Subramaniam Ganesh
چکیده

The heat-shock response is a conserved cellular process characterized by the induction of a unique group of proteins known as heat-shock proteins. One of the primary triggers for this response, at least in mammals, is heat-shock factor 1 (HSF1)--a transcription factor that activates the transcription of heat-shock genes and confers protection against stress-induced cell death. In the present study, we investigated the role of the phosphatase laforin and the ubiquitin ligase malin in the HSF1-mediated heat-shock response. Laforin and malin are defective in Lafora disease (LD), a neurodegenerative disorder associated with epileptic seizures. Using cellular models, we demonstrate that these two proteins, as a functional complex with the co-chaperone CHIP, translocate to the nucleus upon heat shock and that all the three members of this complex are required for full protection against heat-shock-induced cell death. We show further that laforin and malin interact with HSF1 and contribute to its activation during stress by an unknown mechanism. HSF1 is also required for the heat-induced nuclear translocation of laforin and malin. This study demonstrates that laforin and malin are key regulators of HSF1 and that defects in the HSF1-mediated stress response pathway might underlie some of the pathological symptoms in LD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laforin is required for the functional activation of malin in endoplasmic reticulum stress resistance in neuronal cells.

Mutations in either EPM2A, the gene encoding a dual-specificity phosphatase named laforin, or NHLRC1, the gene encoding an E3 ubiquitin ligase named malin, cause Lafora disease in humans. Lafora disease is a fatal neurological disorder characterized by progressive myoclonus epilepsy, severe neurological deterioration and accumulation of poorly branched glycogen inclusions, called Lafora bodies ...

متن کامل

Ubiquitin conjugating enzyme E2-N and sequestosome-1 (p62) are components of the ubiquitination process mediated by the malin-laforin E3-ubiquitin ligase complex.

Lafora disease (LD, OMIM254780, ORPHA501) is a rare neurodegenerative form of epilepsy related to mutations in two proteins: laforin, a dual specificity phosphatase, and malin, an E3-ubiquitin ligase. Both proteins form a functional complex, where laforin recruits specific substrates to be ubiquitinated by malin. However, little is known about the mechanism driving malin-laforin mediated ubiqui...

متن کامل

Regulation of glycogen synthesis by the laforin-malin complex is modulated by the AMP-activated protein kinase pathway.

Lafora progressive myoclonus epilepsy (LD) is a fatal autosomal recessive neurodegenerative disorder characterized by the presence of glycogen-like intracellular inclusions called Lafora bodies. LD is caused by mutations in two genes, EPM2A and EPM2B, encoding respectively laforin, a dual-specificity protein phosphatase, and malin, an E3 ubiquitin ligase. Previously, we and others have suggeste...

متن کامل

Increased Endoplasmic Reticulum Stress and Decreased Proteasomal Function in Lafora Disease Models Lacking the Phosphatase Laforin

BACKGROUND Lafora progressive myoclonus epilepsy (Lafora disease; LD) is a fatal autosomal recessive neurodegenerative disorder caused by loss-of-function mutations in either the EPM2A gene, encoding the dual specificity phosphatase laforin, or the EPM2B gene, encoding the E3-ubiquitin ligase malin. Previously, we and others have shown that both proteins form a functional complex that regulates...

متن کامل

Laforin, a protein with many faces: glucan phosphatase, adapter protein, et alii.

Lafora disease (LD) is a rare, fatal neurodegenerative disorder characterized by the accumulation of glycogen-like inclusions in the cytoplasm of cells from most tissues of affected patients. One hundred years after the first description of these inclusions, the molecular bases underlying the processes involved in LD physiopathology are finally being elucidated. The main cause of the disease is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 124 Pt 13  شماره 

صفحات  -

تاریخ انتشار 2011